Search results for "Energy filtered transmission electron microscopy"

showing 10 items of 14 documents

Probing Physical Properties of Confined Fluids within Individual Nanobubbles

2008

Spatially resolved electron energy-loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM) has been used to investigate as fluidic phase in nanoubbles embedded in a metallic Pd90Pt10 matrix. Using the 1s->2p excitation of the He atoms, maps of the He distribution, in particular of its density an pressure in bubbles of different diameter have been realized, thus providing an indication of the involved bubble formation mechanism. However, the short-range Pauli repulsion mechanism between electrons on neighboring atoms seems insufficient to interpret minute variations of the local local measurements performed at the interface between the metal and the He bubble. Simul…

Condensed Matter - Materials ScienceMaterials scienceMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyElectronPhase (matter)AtomScanning transmission electron microscopyEnergy filtered transmission electron microscopyLiquid bubbleAtomic physicsSpectroscopyExcitationPhysical Review Letters
researchProduct

A Scanning Electron Microscope for Ultracold Atoms

2006

We propose a new technique for the detection of single atoms in ultracold quantum gases. The technique is based on scanning electron microscopy and employs the electron impact ionization of trapped atoms with a focussed electron probe. Subsequent detection of the resulting ions allows for the reconstruction of the atoms position. This technique is expected to achieve a much better spatial resolution compared to any optical detection method. In combination with the sensitivity to single atoms, it makes new in situ measurements of atomic correlations possible. The detection principle is also well suited for the addressing of individual sites in optical lattices.

Condensed Matter::Quantum GasesMaterials scienceStatistical Mechanics (cond-mat.stat-mech)Physics and Astronomy (miscellaneous)Scanning confocal electron microscopyFOS: Physical sciencesElectron tomographyUltracold atomScanning transmission electron microscopyPhysics::Atomic and Molecular ClustersEnergy filtered transmission electron microscopyPhysics::Atomic PhysicsElectron beam-induced depositionAtomic physicsHigh-resolution transmission electron microscopyInstrumentationEnvironmental scanning electron microscopeCondensed Matter - Statistical Mechanics
researchProduct

1996

The uses of atomic force microscopy, scanning tunneling microscopy, electron spectroscopic imaging, electron energy loss spectroscopy and low voltage, high resolution scanning electron microscopy in polymer research are reviewed

Conventional transmission electron microscopePolymers and PlasticsPolymer characterizationbusiness.industryChemistryGeneral Chemical EngineeringScanning confocal electron microscopyScanning capacitance microscopyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter::Materials ScienceOpticsMicroscopyScanning transmission electron microscopyScanning ion-conductance microscopyEnergy filtered transmission electron microscopyOptoelectronicsbusinessActa Polymerica
researchProduct

Automated diffraction tomography combined with electron precession: a new tool forab initionanostructure analysis

2009

AbstractThree-dimensional electron diffraction data was collected with our recently developed module for automated diffraction tomography and used to solve inorganic as well as organic crystal structuresab initio. The diffraction data, which covers nearly the full relevant reciprocal space, was collected in the standard nano electron diffraction mode as well as in combination with the precession technique and was subsequently processed with a newly developed automated diffraction analysis and processing software package. Non-precessed data turned out to be sufficient forab initiostructure solution by direct methods for simple crystal structures only, while precessed data allowed structure s…

DiffractionDiffraction tomographyReciprocal latticeMaterials scienceElectron diffractionElectron tomographyDirect methodsAb initioAnalytical chemistryPhysics::OpticsEnergy filtered transmission electron microscopyComputational physicsMRS Proceedings
researchProduct

Structure analysis of titanate nanorods by automated electron diffraction tomography

2011

A hitherto unknown phase of sodium titanate, NaTi3O6(OH)·2H2O, was identified as the intermediate species in the synthesis of TiO2 nanorods. This new phase, prepared as nanorods, was investigated by electron diffraction, X-ray powder diffraction, thermogravimetric analysis and high-resolution transmission electron microscopy. The structure was determined ab initio using electron diffraction data collected by the recently developed automated diffraction tomography technique. NaTi3O6(OH)·2H2O crystallizes in the monoclinic space group C2/m. Corrugated layers of corner- and edge-sharing distorted TiO6 octahedra are intercalated with Na+ and water of crystallization. The nanorods are typically …

Diffractionthermogravimetric analysisReflection high-energy electron diffractionChemistryGeneral Medicinetitanate nanorodsGeneral Biochemistry Genetics and Molecular BiologyCrystallographyElectron diffractionX-ray powder diffractionEnergy filtered transmission electron microscopyautomated electron diffraction tomographyhigh-resolution transmission electron microscopySelected area diffractionHigh-resolution transmission electron microscopyPowder diffractionElectron backscatter diffractionautomated electron diffraction tomography; high-resolution transmission electron microscopy; thermogravimetric analysis; titanate nanorods; X-ray powder diffraction
researchProduct

Second-harmonic Generation Microscopy of Carbon Nanotubes

2012

We image an individual single-walled carbon nanotube (SWNT) by second-harmonic generation (SHG) and transmission electron microscopy and propose that SHG microscopy could be used to probe the handedness of chiral SWNTs.

Materials sciencePhysics::Medical PhysicsPhysics::OpticsSecond-harmonic generationScanning gate microscopyNanotechnologyCarbon nanotubeSecond Harmonic Generation MicroscopyCondensed Matter::Mesoscopic Systems and Quantum Hall Effectlaw.inventionOptical properties of carbon nanotubesCondensed Matter::Materials ScienceTransmission electron microscopylawEnergy filtered transmission electron microscopyPhotoconductive atomic force microscopyConference on Lasers and Electro-Optics 2012
researchProduct

Structural Characterization of Organics Using Manual and Automated Electron Diffraction

2010

In the last decade the importance of transmission electron microscopic studies has become increasingly important with respect to the characterization of organic materials, ranging from small organic molecules to polymers and biological macromolecules. This review will focus on the use of transmission electron microscope to perform electron crystallography experiments, detailing the approaches in acquiring electron crystallographic data. The traditional selected area approach and the recently developed method of automated diffraction tomography (ADT) will be discussed with special attention paid to the handling of electron beam sensitive organic materials.

Materials sciencePolymers and PlasticsRenewable Energy Sustainability and the EnvironmentElectron crystallographyBiomedical EngineeringCrystallographic dataNanotechnologyGeneral ChemistryElectronautomated data acquisition; electron diffraction; simulation methods; structure determinationsimulation methodsautomated data acquisitionstructure determinationElectronic Optical and Magnetic MaterialsCharacterization (materials science)Diffraction tomographyElectron diffractionTransmission electron microscopyMaterials ChemistryEnergy filtered transmission electron microscopyelectron diffractionElectrical and Electronic Engineering
researchProduct

Total-scattering pair-distribution function of organic material from powder electron diffraction data.

2014

AbstractThis paper shows that pair-distribution function (PDF) analyses can be carried out on organic and organometallic compounds from powder electron diffraction data. Different experimental setups are demonstrated, including selected area electron diffraction and nanodiffraction in transmission electron microscopy or nanodiffraction in scanning transmission electron microscopy modes. The methods were demonstrated on organometallic complexes (chlorinated and unchlorinated copper phthalocyanine) and on purely organic compounds (quinacridone). The PDF curves from powder electron diffraction data, called ePDF, are in good agreement with PDF curves determined from X-ray powder data demonstrat…

Materials scienceReflection high-energy electron diffractionElectron diffractionGas electron diffractionScanning transmission electron microscopyAnalytical chemistryEnergy filtered transmission electron microscopySelected area diffractionInstrumentationPowder diffractionElectron backscatter diffractionMicroscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada
researchProduct

Structure analysis of side chain liquid crystal polymer films by means of electron microscopy

1987

Abstract Using the combined techniques of electron diffraction, bright and dark field electron microscopy as well as light microscopy, it has been possible to obtain detailed structural information about the arrangement of the smectic layers in a polymethacrylate side chain liquid crystal polymer with a biphenylester as the mesogenic group.

Materials scienceReflection high-energy electron diffractionbusiness.industryPolymer characterizationCryo-electron microscopyGeneral ChemistryCondensed Matter PhysicsDark field microscopyCondensed Matter::Soft Condensed MatterCrystallographyOpticsElectron diffractionLiquid crystalSide chainEnergy filtered transmission electron microscopyGeneral Materials SciencebusinessLiquid Crystals
researchProduct

Comparison of the decameric structure of peroxiredoxin-II by transmission electron microscopy and X-ray crystallography

2001

Abstract The decameric human erythrocyte protein torin is identical to the thiol-specific antioxidant protein-II (TSA-II), also termed peroxiredoxin-II (Prx-II). Single particle analysis from electron micrographs of Prx-II molecules homogeneously orientated across holes in the presence of a thin film of ammonium molybdate and trehalose has facilitated the production of a ≥20 A 3-D reconstruction by angular reconstitution that emphasises the D5 symmetry of the ring-like decamer. The X-ray structure for Prx-II was fitted into the transmission electron microscopic reconstruction by molecular replacement. The surface-rendered transmission electron microscopy (TEM) reconstruction correlates well…

Models MolecularMolybdenumErythrocytesSurface PropertiesCryo-electron microscopyChemistryResolution (electron density)BiophysicsTrehaloseSingle particle analysisPeroxiredoxinsCrystallography X-RayBiochemistryNegative stainMicroscopy ElectronCrystallographyPeroxidasesElectron tomographyStructural BiologyTransmission electron microscopyHumansEnergy filtered transmission electron microscopyOrthorhombic crystal systemMolecular BiologyBiochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology
researchProduct